KU LEUVEN

SOLVOMET GROUP

HEAVY RARE-EARTH SEPARATION BY NON-AQUEOUS SOLVENT EXTRACTION Flowsheet development and mixer-settler tests

Brecht Dewulf

ISEC 2022 Monday 26 September

Solvometallurgy

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

SOLVOMET GROUP

Non-aqueous solvent extraction (NASX)

- Distribution of a solute between two immiscible organic phases
- Expands scope of conventional SX
- Can offer enhanced selectivity and treat watersensitive compounds

Requirements

- Low mutual solubility of two phases
- Fast phase separation
- Extractant is soluble in less polar (LP) phase, not in more polar (MP) phase
- Starting metal compound is soluble in the MP phase
- Metal compounds should not react with the organic solvents

Non-aqueous solvent extraction for rare-earth separation

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

Rare-earth elements (REEs) and their application

- 15 lanthanides + Sc and Y
- Critical raw material: highest supply risk (EU: 98% imported from China)
- Economic importance: hard-disk drives, catalysts, abrasives, fluorescent phosphors, permanent magnets
- Importance in energy transition and green technologies

Group separation and purification of individual REE

- Conventional process: 1000s of stages comprising numerous extraction-scrubbing-stripping cycles
- Non-aqueous SX: higher separation factors → more efficient separation process

Batchu et al., **2017**, Sep. Purif. Technol. 174, 544–553

KU LEUVEN

EU H2020 NEMO

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

- Valorization of low-grade sulphide mining waste: 600 Mtonne/yr + historic stockpile 28,000 Mtonne in Europe
- 15 partners across Europe, 3 case studies, 4 pilots
- REE recovery from Sotkamo heap leaching PLS: study of solvometallurgical routes

Goals

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

Within H2020 NEMO project, recovery of REEs from PLS originating from primary heap leaching at Sotkamo (Zn, Cu, Ni, Co) \rightarrow near-zero waste strategy

Use advantages of NASX for efficient group separation of HREEs and individual REE purification with REE starting material based on real industrial concentrate:

- Dissolution in ethylene glycol + aqueous HCl (10 vol%)
- Non-aqueous SX with Cyanex 923
- Entire process will be tested on lab-scale pilots

KU LEUVEN

Experimental setup - equipment

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

SOLVOMET GROUP

Batch Leaching platform (HiTec-Zang)

- Jacketed 1 L and 5 L reactors
- Jacketed filtration units
- Borosilicate glass
- Optimized for viscous liquids

Mixer-settler setup (SX Kinetics)

- 16 stages
- Mixer: 0.270 L; settler: 1.050 L
- Pumps: Cole-Parmer Masterflex L/S: max 10 L/h

Starting material Q discolution	Impurities		Rare-earth elements	
Starting material & dissolution	element	Concentration (wt%)	element	Concentration (wt%)
	Al	1.48	Dy	0.36
	Са	0.20	Но	0.23
irting material	Fe	0.11	Er	2.16
	Mg	0.12	Tm	1.29
	Mn	0.86	Yb	14.27
Obtained via selective precipitation \rightarrow hydroxide	Ni	0.25	Lu	2.64
High RFF content (50 wt%)	Zn	0.77	Y	28.77
Impurities < 4 wt%				
solution				
Preparation of SX MP feed: 10 g L ⁻¹ REE Increase of temperature to 60 °C was needed to enhance dissolution kinetics				
10 vol% water as optimum during SX lab-scale	Impurities		Rare-earth eleme	nts
tosts.	element	Concentration	element	Concentration
		(ppm)		(mag)
 Allows bridging gap between hydro- and 	Al	297	Dy	75
solvometallurgy	Са	207	Но	46
	Fe	34	Er	400
 Allows the use of NaCl 	Mg	23	Tm	252
Reduced mutual solubility	Mn	166	Yb	2595
 Reduced mutual solubility 	Mn Ni	166 49	Yb Lu	2595 536

Solvometallurgy &

Starting material

Dissolution

۲

ullet

٠

ullet

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

KU LEUVEN

C923

Materials

Mixer-settler pilot

KU LEUVEN

60 L of original MP feed solution \rightarrow • purification & separation

Step 1: removal of Zn and Fe (SX1)

- 2* 30 L of scrub solution ٠
- > 100 L of LP phase, with various [Cyanex 923] ٠

Removal of Fe, Zn

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

KU LEUVEN

SOLVOMET GROUP

LP phase flow: 0.72 L/h

MP phase flow: 1.08 L/h

- Retention time 6 min
- Ni and Mg not extracted by Cyanex 923; Ca, Mn limited extraction at higher Cyanex 923 concentration
- Good phase separation, limited yet visible entrainment of LP in MP phase

MP: 10 g L⁻¹ REE, 0.14 g L⁻¹ Zn, 0.4 g L⁻¹ Fe, 0.8 M NaCl, 10 vol% H₂O, EG **LP:** 0.1 M Cyanex 923, petroleum ether

3 stages:

- %*E* Fe 85% (6 ppm) Zn 96% (6 ppm)
- No loss of REE

4 stages:

- %*E* Fe 95% (2 ppm) Zn 99.95% (< 1 ppm)
- Limited loss of REE (1-3 %)

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

Separation Dy, Y, Ho, Er // Tm, Yb, Lu

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

KU LEUVEN

LP phase flow: 1.65 L/h

MP phase flow: 2.48 L/h

Retention time 4 min

- Quasi complete extraction of Tm, Yb, Lu
- Emulsion might pose a problem adapt design of mixer-settlers

element	%E	Conc MP (ppm)	Conc LP (ppm)
Υ	24	3411	1743
Dy	11	59	11.6
Но	25	26.5	16.0
Er	49	123	274
Tm	95.4	11.9	355
Yb	99.4	15.5	3905
Lu	99.4	3.1	919

MP: raffinate ~10 g L⁻¹ REE, 0.8 M NaCl, 10 vol% H₂O, EG LP: 0.1 M Cyanex 923, petroleum ether

Scrubbing of Y, Dy, Ho, Er

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

LP phase flow: 1.65 L/h

• Retention time 4 min

- REE in MP scrub raffinate → recycled to extraction
- Scrubbing very efficient: only 0.5 ppm impurities left

element	%Scr	Conc MP (ppm)	Conc LP (ppm)
Υ	99.98	1204	0.3
Dy	100	7.9	0
Но	98.5	7.4	0.2
Er	100	184	0
Tm	78	173	77
Yb	44	1634	2285
Lu	42	296	566
MP: 0.8 M NaCl, 10 vol% H ₂ O, EG LP: loaded 1 M Cyanex 923, petroleum ether			

SOLVOMET GROUP

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

Separation Dy, Y, Ho // Er

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

KU LEUVEN

SOLVOMET GROUP

LP phase flow: 1.20 L/h

MP phase flow: 0.84 L/h

- Retention time 7 min
- Efficient Er extraction (> 98%)
- Significant co-extraction of Y (90%) and Ho (92%)
 → main issue is scrubbing Y

element	%E	Conc MP (ppm)	Conc LP (ppm)
Υ	90	766	2147
Dy	57	30	20
Но	92	6	17
Er	98.5	8	112
Tm	100	0	15
Yb	100	0	18
Lu	100	0	3
MP: 59 ppm Dy, 32 ppm Ho, 130 ppm Er, 3927 ppm Y, 0.8 M NaCl, 10 vol% H ₂ O, EG			

Solvometallurgy 8 rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

Solvometallurgy 8 rare earths

H2020 NEMO

- Equipment & Materials
- Mixer-settler pilot
 - Conclusions

SOLVOMET GROUP

Extraction of Dy, Ho, Y

- Retention time 6 min
- Presaturation necessary: batch contact of 2 M Cyanex 923 with 0.8 M NaCl in ethylene glycol +10 vol% water
- Emulsion problems occurred, yet 'temporary'
- Complete extraction of REE
- Still metal impurities (300 ppm) in MP (Al, Ca, Mg, Mn, Ni)

element	%Е	Conc MP (ppm)	Conc LP (ppm)
Υ	100	0	881
Dy	100	0	32
Но	100	0	9
Er	100	0	4
Tm	-	0	0
Yb	-	0	0
Lu	-	0	0

LP phase flow: 1.20 L/h

MP phase flow: 1.20 L/h

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

- Stripping of LP (0.1 M Cyanex 923) phase loaded with Fe, Zn
 - Not studied in detail, precipitation stripping with oxalic acid, ammonia or NaOH
- Stripping of LP (1 M Cyanex 923) phases loaded with Tm, Yb, Lu
 - Stripping with aqueous oxalic acid solution: MP:LP = 1:1 and 2x stoichiometric amount
 - After calcination (900 °C, 1.5 h): REO purity 99.8%
- Stripping of LP (1 M Cyanex 923) phases loaded with REE, transition metals
 - Stripping with aqueous oxalic acid solution: MP:LP = 1:1 and 2x stoichiometric amount
 - After calcination (900 °C, 1.5 h): Er_2O_3 purity 8%; enrichment factor = 2
- Stripping of LP (2 M Cyanex 923, presaturated) phases loaded with REE, transition metals
 - Stripping with aqueous oxalic acid solution: MP:LP = 1:1 and 2x stoichiometric amount
 - After calcination (900 °C, 1.5 h): REO purity 98.7%
 - No volume change observed during stripping traces of ethylene glycol in aqueous solution

Conclusions

Equipment & Materials

Mixer-settler pilot

Conclusions

KU LEUVEN

SOLVOMET GROUP

- Non-aqueous extraction system has been developed:
 - MP: 10 g L⁻¹ HREE, NaCl, 10 vol% water, ethylene glycol
 - LP: 0.1 2 M Cyanex 923 in petroleum ether
- Successful separation of HREEs into 2 groups:
 - Only 16 stages needed in total (compared to 70 in conventional process)
 - Purity Tm-Yb-Lu: 99.8% / Purity Dy-Ho-(Y)-Er: 98.7%
- Purification of Er is challenging due to scrubbing limitations
- Non-aqueous process feasible on mixer-settlers; adjusted design would reduce emulsion band thickness
- Future challenges:
 - Taking into account the removal of all impurities
 - Reusing the MP phase after extraction: how to maintain the water content, while adding HC
 - Optimizing and improving separation into pure, single-element REE products
 - Costs of pilot process exceed the revenue: optimization of throughput (e.g. REE concentration increase) and chemicals consumption

18

Paper reference

Solvometallurgy & rare earths

H2020 NEMO

Equipment & Materials

Mixer-settler pilot

Conclusions

Purificatio

Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests

Brecht Dewulf, Sofía Riaño, Koen Binnemans

KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. box 2404, Leuven B-3001, Belgium

B. Dewulf, S. Riaño and K. Binnemans, Separation of heavy rare-earth elements by nonaqueous solvent extraction: flowsheet development and mixer-settler tests, *Separation and Purification Technology*, **2022**, *290*, 120882. DOI: 10.1016/j.seppur.2022.120882.

https://solvomet.eu https://kuleuven.sim2.be/ https://h2020-nemo.eu/

Contact: Brecht Dewulf (brecht.dewulf@kuleuven.be)

Acknowledgements

Dr. Sofía Riaño Torres

Prof. Dr. Koen Binnemans

SOLVOMET team

EU Horizon 2020 NEMO

KU LEUVEN

SOLVOMET GROUP

the research leading to results obtained in this presentation received funding from the European Union's Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement number 776846 (NEMO)