

Separation of rare-earth elements by non-aqueous solvent extraction

Brecht Dewulf

RawMat 2021 7 September, session B5

Solvometallurgy

Introduction: Solvometallurgy

Research plan and goals

Testing of PMOS

Correlation to solvent properties

Conclusions

Non-aqueous solvent extraction (NASX)

- Distribution of a solute between two immiscible organic phases
- Expands scope of conventional SX
- Can offer enhanced selectivity and treat water-sensitive compounds

Requirements

- Low mutual solubility of two phases
- Fast phase separation
- Extractant is soluble in less polar (LP) phase, not in more polar (MP) phase
- Starting metal compound is soluble in the MP phase
- Metal compounds should not react with the organic solvents

Binnemans and Jones, **2017**, J. Sustain. Met. 3, 570–600

SOLVOMET GROUP

Non-aqueous solvent extraction for REE separation

Introduction: Solvometallurgy

Research plan and goals

Testing of PMOS

Correlation to solvent properties

Conclusions

Group separation and purification of individual REE

- Conventional process: 1000s of stages comprising numerous extraction-scrubbing-stripping cycles
- Non-aqueous SX: higher separation factors \rightarrow more efficient separation process

Examples:

- Eu/Y separation from ethylene glycol
- 3 extraction and 2 scrubbing stages
- Precipitation stripping (oxalic acid)
- 99.92% pure Y₂O₃

Nd/Dy separation from poly(ethylene) glycol

- Bridging the gap with hydrometallurgy: 30 vol% water
- 2 extraction and 1 scrubbing stages
- Precipitation stripping (oxalic acid)

REE group separation from ethylene glycol

- Y, Dy, Ho // Er // Tm, Yb, Lu
- Based on industrial hydroxide concentrate
- Impurity removal and separation < 30 stages
- Precipitation stripping (oxalic acid)

KU LEUVEN

SOLVOMET GROUP Sep. Purif. Technol. 2020, 235, 116193

ACS Sustainable Chem. Eng. 2020, 8, 19032-19039

EU H2020 NEMO

Introduction: Solvometallurgy

- Research plan and goals
- Testing of PMOS
- Correlation to solvent properties
 - Conclusions

- Valorization of low-grade sulphide mining waste: 600 Mtonne/yr + historic stockpile 28,000 Mtonne in Europe
- 15 partners across Europe, 3 case studies, 4 pilots
- REE recovery: study of solvometallurgical routes

Introduction: Solvometallurgy

Research plan and goals

Testing of PMOS

Correlation to solvent properties

Conclusions

Research questions and hypotheses

1. Why are some polar solvents better in separation of REE than others?

2. How do solvent properties correlate with SX results?

Metal-ion complexation strongly depends on the solvent:

- Metal-ion solvent interaction
- Metal-ion counterion interaction (ion pair formation, dielectric cte.)
- Counterion solvent interaction
- Solvent solvent interaction (bulk structure, protic/aprotic)

Experimental setup

Introduction: Solvometallurgy

Research plan and goals

Testing of PMOS

Correlation to solvent properties

Conclusions

KU LEUVEN

SOLVOMET GROUP

Less polar (LP) phase: Cyanex 923, 10 vol% 1-decanol, n-dodecane

More polar (MP) phase:

O = F

- La, Nd, Eu, Dy, Yb (0.01 mol L⁻¹ each)
- LiCl: 0 4 mol L⁻¹
- Different polar molecular organic solvents (PMOS):
 - methanol, ethanol
 - ethylene glycol, 1,2-propanediol, 1,3-propanediol
 - diethylene glycol, triethylene glycol
 - methoxyethanol, ethanolamine
 - mono-, di-, triglyme
 - DMSO, acetonitrile, formamide, DMF, DMA

 $Ln^{3+} + 3Cl^{-} + \overline{nC923} \leftrightarrows \overline{LnCl_3 \cdot nC923}$

Water vs. Methanol vs. Ethylene glycol

Testing of PMOS

Correlation to solvent properties

Conclusions

Water:

- negligible extraction at low [LiCl]: strong hydration of lanthanide ions
- limited separation

MeOH:

- At low [LiCl]: mutual solubility issues causing lower %E
- Complete extraction without separation at high [LiCl]: solvation strength lower, lower ε Ethylene glycol:
- Enhanced separation REE, especially HREE
- Bidentate binding

KU LEUVEN

SOLVOMET GROUP

Enhanced separation by DMSO and ethylene glycol

Solvometallurgy Research plan and goals

Testing of PMOS

Correlation to solvent properties

Conclusions

- DMSO shows enhanced separation of the MREEs
- DMSO is a highly structured solvent, strong solvation of REE ions $\leftarrow \rightarrow$ weaker solvation of anions
- Dielectric constant DMSO = 47 similar to that of EG (41, both at 293 K)

Glycol structure effects

- Extraction efficiency: ethylene glycol < 1,2-propanediol < 1,3-propanediol
- Dielectric constants: 1,2-propanediol ~ 1,3-propanediol < ethylene glycol
- Solvent structure, solvent-solvent interactions will play an important role
- Steric effects of the extra methyl group or lengthening carbon chain: bidentate vs. monodentate

KU LEUVEN

SOLVOMET GROUP

Introduction: Solvometallurgy

Research plan and goals

Testing of PMOS

Correlation to solvent properties

Conclusions

UV-Vis: bathochromic shift indicates contact ion pair formation

Effect on REE-ion – chloride ion pairing?

- ${}^{4}G_{5/2} \leftarrow {}^{4}I_{9/2}$ hypersensitive transition
- Crystal-field splitting or presence different species
 → challenging!
- Nephelauxetic effect: redshift H₂O < EG; 1,2-PD < 1,3-PD
- Glycols: redshift of peak position with increasing
 [LiCl] → increased RECl₃ formation
- Water: no such shift observed

Conditions: 0.1 mol L⁻¹ NdCl₃ and 0 – 3 M LiCl Legend: EG = ethylene glycol; 1,2- and 1,3-PD = 1,2- and 1,3-propanediol

KU LEUVEN

Conclusion: contact ion pair formation increased in glycols

Preferential solvation

Introduction: Solvometallurgy

Research plan and goals

Testing of PMOS

Correlation to solvent properties

Conclusions

• Can be an indication of solvation strength of the REE ion

- No change in preferential solvation
- Order of preferential solvation:

Ethylene glycol > 1,2-propanediol > water > 1,3-propanediol

- \rightarrow Resembles extraction results
- → Water: stronger affinity for the chloride counterions, effect not included in the order of preferential solvation

Conclusion: solvation strength of glycols follows the order of extraction

Introduction: Solvometallurgy

Research plan and goals

Testing of PMOS

Correlation to solvent properties

Conclusions

Main research conclusions

- Extraction of REE is strongly influenced by the polar organic solvent
- Extraction of REE from a series of glycols: extraction partly to be explained by solvent structure, contact ion pair formation and solvation strength
- Correlation dielectric constant extraction results
- Combination of large number of factors impedes prediction of extraction results based on solvent properties
- Effects of solvent bulk structure should be investigated in more detail

https://solvomet.eu https://kuleuven.sim2.be/ https://h2020-nemo.eu/

Contact: Brecht Dewulf (brecht.Dewulf@kuleuven.be)

Acknowledgements

Vincent Cool

Prof. Dr. Koen Binnemans

SOLVOMET team

EU Horizon 2020 NEMO

KU LEUVEN

SOLVOMET GROUP

