

Purification and separation of rare-earth elements originating from sulphidic mining residue using nonaqueous solvent extraction

Brecht Dewulf

ECCE-ECAB 2021 Monday 20 September

Solvometallurgy & rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

Solvometallurgy

Non-aqueous solvent extraction (NASX)

- Distribution of a solute between two immiscible organic phases
- Expands scope of conventional SX
- Can offer enhanced selectivity and treat watersensitive compounds

Requirements

- Low mutual solubility of two phases
- Fast phase separation
- Extractant is soluble in less polar (LP) phase, not in more polar (MP) phase
- Starting metal compound is soluble in the MP phase
- Metal compounds should not react with the organic solvents

Non-aqueous solvent extraction for rare-earth separation

Solvometallurgy & rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

Rare-earth elements (REEs) and their application

- 15 lanthanides + Sc and Y
- Critical raw material: highest supply risk (EU: 98% imported from China)
- Economic importance: hard-disk drives, catalysts, abrasives, fluorescent phosphors, permanent magnets
- Importance in energy transition and green technologies

Group separation and purification of individual REE

- Conventional process: 1000s of stages comprising numerous extraction-scrubbing-stripping cycles
- Non-aqueous SX: higher separation factors → more efficient separation process

Batchu *et al.*, **2017**, Sep. Purif. Technol. 174, 544–553

SOLVOMET GROUP

KU LEUVEN

EU H2020 NEMO

Solvometallurgy & rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

- Valorization of low-grade sulphide mining waste: 600 Mtonne/yr + historic stockpile 28,000 Mtonne in Europe
- 15 partners across Europe, 3 case studies, 4 pilots
- REE recovery from Sotkamo residue: study of solvometallurgical routes

EU H2020 NEMO

Solvometallurgy & rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

SOLVOMET GROUP

Impurities		Rare-earth element composition	
element	Concentration (wt% hydroxide mixture)	element	Concentration (wt% hydroxide mixture)
Al(III)	2.05	Dy(III)	0.42
Ca(II)	1.56	Ho(III)	0.27
Fe(III)	0.18	Er(III)	2.28
Mg(II)	0.12	Tm(III)	1.41
Mn(II)	0.93	Yb(III)	15.30
Ni(II)	0.30	Lu(III)	2.96
Zn(II)	0.81	Y(III)	29.88

Experimental setup - overview

Solvometallurgy & rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

(main component)

SOLVOMET GROUP

Experimental setup - equipment

Solvometallurgy & rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

KU LEUVEN

SOLVOMET GROUP

- Jacketed 1 L and 5 L reactors
- Jacketed filtration units
- Borosilicate glass
- Optimized for viscous liquids

Mixer-settler setup (SX Kinetics)

- 16 stages
- Mixer: 0.270 L; settler: 1.050 L
- Pumps: Cole-Parmer Masterflex L/S: max 10 L/h

Flowsheet overview: Dy, Y, Ho // Er // Tm, Yb, Lu

Solvometallurgy 8 rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

SOLVOMET GROUP

Scale:

- 60 L of original MP feed solution \rightarrow purification & separation
- 2* 30 L of scrub solution
 - > 100 L of LP phase, with various [C923]

Removal of Fe, Zn

Solvometallurgy & rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

KU LEUVEN

SOLVOMET GROUP

LP phase flow: 0.72 L/h

- Retention time 6 min
- Ni and Mg not extracted by C923; Ca, Mn limited extraction at higher C923 concentration
- Good phase separation, limited yet visible entrainment of LP in MP phase

3 stages:

- %*E* Fe 85% (6 ppm) Zn 96% (6 ppm)
- No loss of REE

4 stages:

- %*E* Fe 95% (2 ppm) Zn 99.95% (< 1 ppm)
- Limited loss of REE (1-3 %)

MP: 10 g L⁻¹ REE, 0.14 g L⁻¹ Zn, 0.4 g L⁻¹ Fe, 0.8 M NaCl, 10 vol% H_2O , EG

LP: 0.1 M C923, petroleum ether

Separation Dy, Y, Ho, Er // Tm, Yb, Lu

Solvometallurgy & rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

element	%E	Conc MP (ppm)	Conc LP (ppm)
Υ	24	3411	1743
Dy	11	59	11.6
Но	25	26.5	16.0
Er	49	123	274
Tm	95.4	11.9	355
Yb	99.4	15.5	3905
Lu	99.4	3.1	919

LP phase flow: 1.65 L/h

- Retention time 4 min
- Quasi complete extraction of Tm, Yb, Lu
- Emulsion might pose a problem adapt design of mixer-settlers

MP: raffinate ~10 g L⁻¹ REE, 0.8 M NaCl, 10 vol% H_2O , EG

LP: 0.1 M C923, petroleum ether

Scrubbing of Y, Dy, Ho, Er

Solvometallurgy 8 rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

element	%Scr	Conc MP (ppm)	Conc LP (ppm)
γ	99.98	1204	0.3
Dy	100	7.9	0
Но	98.5	7.4	0.2
Er	100	184	0
Tm	78	173	77
Yb	44	1634	2285
Lu	42	296	566

LP phase flow: 1.65 L/h

- Retention time 4 min
- REE in MP scrub raffinate → recycled to extraction
- Scrubbing very efficient: purity Tm-group > 99.99%

Separation Dy, Y, Ho // Er

Solvometallurgy & rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

element	%Е	Conc MP (ppm)	Conc LP (ppm)
Υ	90	766	2147
Dy	57	30	20
Но	92	6	17
Er	98.5	8	112
Tm	100	0	15
Yb	100	0	18
Lu	100	0	3

LP phase flow: 1.20 L/h

- Retention time 7 min
- Significant co-extraction of Y, Ho
 → main issue will be scrubbing Y

MP: 59 ppm Dy, 32 ppm Ho, 130 ppm Er, 3927 ppm Y, 0.8 M NaCl, 10 vol% H₂O, EG

LP: 1 M C923, petroleum ether

Solvometallurgy 8 rare earths

H2020 NEMO

Materials & experimental conditions

Mixer-settler pilot

Conclusions

Main research conclusions

- Efficient group separation of HREE by non-aqueous solvent extraction (Dy, Y, Ho, Er // Tm, Yb, Lu)
- Er separation and purification challenging
- Feasibility of non-aqueous process demonstrated on lab-scale mixer-settler pilot
- Non-aqueous solvent extraction complementary to hydrometallurgical extraction techniques

Future outlook of non-aqueous solvent-extraction:

- Economic feasibility studies
- Further optimization of processes to overcome current issues
- Study the reuse of the MP and LP phases

https://solvomet.eu https://kuleuven.sim2.be/ https://h2020-nemo.eu/

Contact: Brecht Dewulf (brecht.Dewulf@kuleuven.be)

Acknowledgements

Sofía Riaño Torres

Prof. Dr. Koen Binnemans

SOLVOMET team

EU Horizon 2020 NEMO

KU LEUVEN

SOLVOMET GROUP

