Effect of nutrient and raffinate addition in bioleaching of a pyrrhotite-pyrite ore

Carmen Falagán (C.Falagan@exeter.ac.uk) David Dew (D.W.Dew@exeter.ac.uk) Karen Hudson-Edwards (K.Hudson-Edwards@exeter.ac.uk)



## NEMO





The NEMO project has received funding from the European Union's Horizon2020 research and innovation programme under grant agreement No 776846

Near-zero-waste recycling of low-grade sulfidic mining waste (<u>https://h2020-nemo.eu/</u>)

 Development new ways to valorise sulfidic mining waste

 Three cases, at UoE we are looking at one case: the Sotkamo mine (Terrafame) in Finland



# NEMO at UoE

Simulate heap leach conditions to test process fundamentals:

- Irrigate at sensible rate to simulate solution pH and metal concentration profile across ore bed
- Study effect of nutrient addition on microbial activity
- Study effect of dissolved salt concentration on microbial activity and mineral leach rate
- Mineralogical and chemical characterization of ore and residues



#### Sotkamo mine

#### Talvivaara bioheapleaching process



#### Ni-Cu-Co-Zn ore

- Contains pyrrhotite, pyrite, pentlandite
- Leached in the 'primary heap'
- Moved to a 'secondary heap'
- The irrigation solution at Sotkamo is a mixture of PLS and water.

#### Mineralogical composition of secondary ore by QEMSCAN



#### Sequential extraction

|        | Co | Cu | Mn | Ni | Zn |                              |                        |
|--------|----|----|----|----|----|------------------------------|------------------------|
|        | %  | %  | %  | %  | %  |                              |                        |
| Step 1 |    |    |    |    |    | Water soluble                | <br>High concentration |
| Step 2 |    |    |    |    |    | Acid soluble                 | voter-soluble phase    |
| Step 3 |    |    |    |    |    | Acid/Bio soluble             | that dissolves when    |
| Step 4 |    |    |    |    |    | Acid/Bio soluble             | preparing sample       |
| Step 5 |    |    |    |    |    | Bioleached oxidative soluble | for QEMSCAN            |
| Step 6 |    |    |    |    |    | Bioleached oxidative soluble |                        |
| Step 7 |    |    |    |    |    | Unleachable                  |                        |

Dold (2003). Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. Journal of Geochemical Exploration 80, pp 55-68.

#### Sulfide mineralogy of secondary ore

Hubau A, Guezennec A-G, Joulian C, Falagán C, Dew D, Hudson-Edwards KA. Bioleaching to reprocess sulfidic polymetallic primary mining residues: Determination of metal leaching mechanisms. Hydrometallurgy. 2020 Nov 1;197:105484.



#### Mass distribution of sulfide minerals (%)



#### Sulfide mineralogy of secondary ore

Hubau A, Guezennec A-G, Joulian C, Falagán C, Dew D, Hudson-Edwards KA. Bioleaching to reprocess sulfidic polymetallic primary mining residues: Determination of metal leaching mechanisms. Hydrometallurgy. 2020 Nov 1;197:105484.

#### Mass distribution sulfide minerals (%)



- Fe altered minerals 11.97 % Cu, Co, Ni, Zn
- Pyrite 2.45 % Co
- Pyrrhotite 0.30 % Cu, Co
- Sphalerite 0.20 % Zn, Mn
- Chalcopyrite 0.17 % Cu
- Violarite 0.06 % Ni, Co
- Pentlandite 0.01 % Ni

Fe-Ox – Cu, Co, Zn, Ni







## Column experiments set-up





## Column experiments settings



|                      | C48-3 | C48-2 | C48-4 | C60-1 | C60-2 | C60-3 |
|----------------------|-------|-------|-------|-------|-------|-------|
| Temperature          | 48°C  | 48°C  | 48°C  | 60°C  | 60°C  | 60°C  |
| Inoculation          | Y     | Ν     | Y     | Y     | Ν     | Y     |
| рН                   | 1.2   | 1.1   | 1.3   | 1.2   | 1.1   | 1.3   |
| Nutrients            | Y     | Ν     | Y     | Y     | Ν     | Y     |
| Fe(II)               | 1 g/L |
| Synthetic raffinate* | Ν     | Ν     | Y     | Ν     | Ν     | Y     |



#### Column experiments inoculation

- Columns (C48-3, C48-4, C60-1 and C60-3) were inoculated at a week after starting (cumulative irrigation ratio 0.4 0.6 m<sup>3</sup>/T ore)
- C48-4 was inoculated a second time after 48 days from the start of the experiment (cumulative irrigation ratio 3.7 m<sup>3</sup>/T ore)
- Cultures used to inoculate columns irrigated with 100% synthetic raffinate (C48-4 and C60-3) where cultivated in the presence of Mg and AI as sulfate salts





# Results: pH and redox

- First irrigation period characterized by drainage solution with high pH and low redox
- Drainage solution pH at the end of experiment similar in all columns
- No inoculated columns show similar redox than inoculated columns when irrigated with no raffinate
- Drainage solution redox lower in columns irrigated with synthetic raffinate





## **Results: metal dissolution**



 Similar metal dissolution profiles in all columns
 High dissolution of metals at the beginning of the experiments



# **Results: metal dissolution**





- Initial high release of metals  $\rightarrow$  Water soluble fraction (sequential extraction)
  - 60-65 % of Ni and 50-60% of Zn are leached during the acid dissolution phase
- Only 38-42% of Co and 30-38% of Cu are leached during the acid dissolution phase

|                             |                                 | Co | Cu | Mn | Ni | Zn |
|-----------------------------|---------------------------------|----|----|----|----|----|
| Sequential extraction steps |                                 | %  | %  | %  | %  | %  |
| Step 1 + 2                  | Water/Acid soluble              |    |    |    |    |    |
| Step 3 + 4                  | Acid/Bio soluble                |    |    |    |    |    |
| Step 5 + 6                  | Bioleached oxidative<br>soluble |    |    |    |    |    |
| Step 7                      | Unleachable                     |    |    |    |    |    |



# **Results: metal dissolution**





- Lower Co and Cu dissolution at 48 °C
- Lowest Co and Cu dissolution at 48 °C when irrigated with 100% synthetic raffinate

|                             |                                 | Co | Cu | Mn | Ni | Zn |
|-----------------------------|---------------------------------|----|----|----|----|----|
| Sequential extraction steps |                                 | %  | %  | %  | %  | %  |
| Step 1 + 2                  | Water/Acid soluble              |    |    |    |    |    |
| Step 3 + 4                  | Acid/Bio soluble                |    |    |    |    |    |
| Step 5 + 6                  | Bioleached oxidative<br>soluble |    |    |    |    |    |
| Step 7                      | Unleachable                     |    |    |    |    |    |



Nutrients + Inoculum No Nutrients; No Inoculum Nutrients + Inoculum +

100 % synthetic raffinate



# Conclusions

- Conclusions to be found in paper in preparation.
- This presentation will be updated when the paper is published.
- If you want more information or are interested in collaborating with us you can find our email in the first slide of the presentation.

# Acknowledgments Terrafame: https://www.terrafame.com/terrafame.ltd.html FGM: https://www.mineralsgroup.fi/ CSM tech team: http://emps.exeter.ac.uk/csm/facilities/ ESI tech team: https://www.exeter.ac.uk/csi/ Wheal Jane laboratories: https://www.wheal-jane-laboratory.co.uk/ And you!



#### EXETER | ENVIRONMENT AND SUSTAINABILITY INSTITUTE