TURNING THE "EXTRACTIVE WASTE PROBLEM" INTO A "RESOURCE RECOVERY OPPORTUNITY"

Teodor VELEA, Vasile PREDICA, Alexandra-Georgiana VATUI, Ioana-Andreea CHIREA, Ionut MACARESCU, Carlos FRIAS GOMEZ, Manuel SEVILLA, Mika PAAJANEN, Lieven MACHIELS

2019 SUSTAINABLE INDUSTRIAL PROCESSING SUMMIT AND EXHIBITION

ABSTRACT

The mining of non-ferrous metals, such as Cu, Pb, Zn, Au, Ag, produces a large volume of metals and enormous volumes of waste.

- A particular problem is generated by the sulphidic waste-like pyrites.
- This paper presents the results of experiments for advanced removal of sulphur, in order to obtain near-zero waste and valuable products and by-products.

This paper is part of the "NEMO" project, which has received funding from the European Union, EU Horizon 2020 Programme under Grant Agreement No. 776846 https://h2020-nemo.eu/.

European Commission

INTRODUCTION

- a) The mining of non-ferrous metals, such as Cu, Pb, Zn, Ni, Co, and precious metals (Au, Ag, and Pt) produces the largest volume of extractive waste in Europe: about 29% of all the waste is produced in the EU-28. Consequently, enormous volumes of this material, known as "tailings", can cause environmental problems (particularly sulphidic tailings which may cause acid mine drainage).
- b) In its 2016 "Raw Materials Scoreboard" report, the European Innovation Partnership (EIP) on Raw Materials launched a "call to arms" to transform the "extractive waste problems" into a "resource recovery opportunity".
- C) In response to this call an interdisciplinary consortium from the 'Near-zero-waste recycling of low-grade sulphidic mining waste for critical-metal, mineral and construction raw-material production in a circular economy — NEMO' project developed new technologies and new techniques for processing sulphidic tailings arising from the production of Cu, Zn, Pb etc. in some important mines in Spain and Finland.

MAIN OBJECTIVE

Pressure alkaline leaching process was investigated to achieve a viable alternative to roasting-smelting sulphidic waste, with the associated environmental and socio-economic benefits:

- reducing to zero SO_2 emissions,
- eliminating problems with H_2SO_4 market saturation,
- decreasing high capital cost and energy consumption.

EXPERIMENTAL WORK

The specific objectives of the research work were:

- To define and characterize sulphidic mining waste.
- To demonstrate how alkaline oxidation of sulphidic mining waste leads to advanced removal / recovery of sulphur in order to obtain near-zero waste and valuable products and by-products,
- To evaluate the Cu, Zn, As oxidation rate using autoclave alkaline oxidation,

- To validate the parameters of the alkaline leaching process aiming at the recovery of the valuable components from sulphidic

mining waste.

RAW MATERIAL CHARACTERISATION

Raw materials are tailings from CLC - Copper Mine, Spain.

	Chemical characterization of CLC sample											
	Method	ME-ICP81x										
	Analyse	Cu	Fe	Ca	As	Pb	Zn	Mn	S			
		%	%	%	%	%	%	%	%			
Sample	N11O- 001	0.53	29.4	0.13	0.26	0.66	0.13	0.02	35.2			
	Analyse	SiO ₂	AI	Со	Ni	Mg	K	Ag	AI			
		%	%	%	%	%	%	ppm	%			
Sample	N11O- 001	33.7	0.52	0.042	<0.005	0.04	0.11	27.8	0.04			

Pyrite (FeS₂) is the predominant mineral in the sample and appears to be associated with: ZnS blend, covellite CuS, galena PbS, bornite Cu_5FeS_4 , quartz SiO₂, feldspar plagioclase $Ca(Al_2Si_2O_8)$.

TECHNOLOGICAL CONCEPT

THE MAIN EQUIPMENT

Alkaline oxidation of sulphidic mining waste in 20 litre autoclave with continuous feed

Bench scale experiments used a continuous-feed 20 litre autoclave, made of SS316, with the following facilities.

- Electric heating with constant temperature control and maintenance;
- Cooling system for exothermic processes;
- Continuous gas supply (air, oxygen, etc.) in the liquid mass and continuous gas discharge with constant pressure maintenance;
- Continuous suspension feeding with metering pump (diaphragm pump);
- Continuous drainage of autoclave suspension;
- Sampling during operation.

CRYSTALLIZATION EQUIPMENT – SPRAY DRYER

Potassium/sodium sulphate

RESULTS

1.Attrition

To demonstrate the effect of mechanical activation on the process of alkaline oxidation of mining waste, alkaline leaching experiments were carried out under constant conditions:

Temperature 135 °C;
Total pressure 8 atm.;
Oxidation time 4 h;
Oxidizing agent air;

• Reaction media: alkaline K_2CO_3 . oxidized waste, with and without grinding

Thus, the sulphur oxidation efficiency for untreated waste was 92%, for waste milled for 10 minutes it was 94%, and in case of grinding for 20 minutes the sulphur oxidation efficiency was 98%.

2. AUTOCLAVE ALKALINE OXIDATION

1.Oxidation agent: air / oxygen; alkaline medium K_2CO_3 In the autoclave leaching experiments, air and oxygen were used.

•Temperature 135 °C;
• Total pressure 8 atm.;
•Grinding time 0-1<u>0 min.;</u>

•L/S ratio 15/1-17/1.

Using air as oxidant agent, it was necessary 4 hours to obtain 96-98% sulphur oxidation efficiency and 2 hours when it was used oxygen as oxidant. S content over time during pressure leaching in potassium carbonate media, as a function of leaching time; air or oxygen as oxidant

S content over leaching time in potassium carbonate media; electricity consumption as a function of leaching time

Thus, by using air for oxidation reaction after one hour the sulphur content of the oxidized waste drops from 33.54% to 18.75%, with an electrical consumption of 0.6 Kwh.

By using oxygen for the oxidation process after one hour the content of sulphur from the oxidized waste drops from 33.54% to 0.78%, with an energy consumption of 0.20 kWh. b. Oxidation agent: air / oxygen; alkaline medium Na₂CO₃ Working parameters:

• Temperature	135 ºC;
---------------	---------

- Total pressure 8 atm.;
- Grinding time 0-10 min.;
- L/S ratio 15/1-17/1,
- Reaction time 1-4 h.

The results demonstrated the dependence of the oxidation degree of suphur using Na_2CO_3 / NaOH as oxidants function of the liquid/ solid ratio.

function of the L/S ratio

c. Oxidizing agent: air; alkaline medium NaOH Compared to solubilisation in alkaline Na_2CO_3 , solubilisation in NaOH medium leads to higher sulphur oxidation rates during the first 2 to 4 hours of reaction.

•Alkaline sulphate solutions processing (resulted _c from oxidation under pressure)

- ✓ After alkaline oxidation, sulphur from sulphidic waste passes in the solution as SO₄²⁻, with 96-99% efficiency.
- ✓ The non-ferrous metals from tailings are oxidized and transferred into solution with a very low efficiency if the alkaline medium consists of K₂CO₃ and Na₂CO₃. When it was used NaOH as oxidant agent, the arsenic is transferred into solution with 50-70% efficiency.
- ✓ The distribution of main metals between solution and waste, after oxidation process (in presence of air) and K₂CO₃ (1), Na₂CO₃(2), NaOH (3) as oxidant agents.

%, g/l	Fe	Cu	Pb	Zn	As
Mining waste	29.06	0.47	0.69	0.128	0.236
1. residue	30.3	0.45	0.65	0.12	0.23
1. solution	0.001	0.001	0.0004	0.001	0.001
2. residue	29.9	0.44	0.63	0.11	0.23
2. solution	0.001	0.001	0.0003	0.001	0.001
3.residue	30.22	0.36	0.62	0.12	0.037
3.solution	0.001	0.1	0.0005	0.001	0.145

K₂SO₄ Crystals

Alkali sulphates were crystallized from potassium sulphate solutions, having the following chemical composition.

Sample	Chemical composition (g/L; %)												
code	K	SO ₄ ²⁻		Fe		Cu		Pb		Zn	A	\s	Sb
K₂SO₄ crystals	43.8	55.74		0.0	010	<0.0005		<0.0002		002 <0.0005		0002	<0.0002
Sample	Chemical composition (%) continued												
code	Cd	Cd Co		AI C		a	Mg		Na		CI		
K₂SO₄ crystals	<0.0002	<0.0002	<0.0	0005	0.0	800	<0.0	005		0.058		0).008

CONCLUSIONS

- 1) Autoclave alkaline oxidation of tailings leads to a selective and advanced removal of sulphur and its recovery as sodium / potassium sulphate like pure crystals.
- 2) We believe that this concept of sulphidic tailings processing could replace the pyrometallurgical processing methods that are generally based on waste roasting.
- 3) Fortunately, all the results and data can be successfully used as a replication in others cases, to process other types of sulphidic waste, low-grade sulphidic non-ferrous metal concentrates, etc, with realistic changes to solve with high efficiency problems and to ensure environmental protection, with minimal risks.

THANK YOU FOR YOUR ATTENTION

 \cap